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1 Introduction and motivation

The gauge/gravity duality is a powerful tool for understanding strongly coupled field theo-

ries and it has been applied extensively to a plethora of relativistic conformal field theories

in various dimensions [1, 2]. In condensed matter physics there exist strongly coupled

systems which respect the non-relativistic analog of the conformal group, known as the
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Schrödinger group. Recently it has been shown that one can realize certain gravity solu-

tions which are invariant under the Schrödinger group and thus extend the gauge/gravity

duality to non-relativistic systems. This provides a new opportunity to apply holographic

techniques to condensed matter systems.1

The celebrated example of gauge/gravity duality (in its weak form) is the equivalence

between classical type IIB supergravity in AdS5 × S5 background and the large ’t Hooft

coupling limit of the planar N = 4 super Yang-Mills (SYM) theory. It has been further

realized that this correspondence can be extended to a large class of deformations of N = 4

SYM which possess less global symmetry and supersymmetry. These include relevant de-

formations [28, 29] triggered by turning on certain mass terms for the adjoint scalars2 and

the marginal β-deformations [30, 31] corresponding to deformation of the N = 4 superpo-

tential. It seems natural to look for non-relativistic cousins of these gravity solutions and

this will be our goal in this note.

Gravity solutions invariant under the Schrödinger group were first constructed in five

dimensions [3, 4] and later embedded in ten dimensions by performing a null Melvin twist

on the familiar AdS5 × S5 solution [8–10]. The null Melvin twist [32, 33] is a solution

generating technique which can be applied to any solution of ten-dimensional supergravity

with one compact and one non-compact U(1) isometries. It consists of performing a boost,

T-duality, shift, T-duality and another boost. If the compact manifold has at least U(1)3

isometry (which is the case of S5) one can generalize this transformation by allowing three

independent shifts along the three independent U(1) directions. Using this we obtain the

most general null Melvin twist of the AdS5 × S5 black hole solution. When all three shifts

are set equal the background reduces to the one found in [8–10] and at zero temperature

the background is invariant under the full Schrödinger group.

We also exploit the null Melvin twist to generate holographic duals to the non-rel-

ativistic version of N = 4 SYM deformed by relevant and marginal operators. There

are two RG flows that have explicit ten-dimensional gravity duals. The solution of [34]

corresponds to an N = 1 supersymmetric RG flow triggered by a mass term for one of

the three complex chiral superfields of N = 4 SYM. This solution flows to an N = 1

superconformal fixed point in the IR and the gravity dual of this conformal fixed point

was originally found in [35]. The other type IIB background that we consider is dual to

the N = 2∗ supersymmetric RG flow induced by turning on masses for two of the chiral

superfields of N = 4 SYM. The gravity dual of this flow was found in [36] (see also [37]).

In the infrared it does not flow to a fixed point, instead there is a particular distribution

of D3 branes which is interpreted as the Coulomb branch of the gauge theory.3 We also

find the non-relativistic generalizations of the one parameter family of gravity solutions

interpolating between the Klebanov-Witten(KW) point [38] and a Z2 orbifold of the Pilch-

Warner(PW) [35] fixed point [39]. Finally we consider the non-relativistic cousin of the

Lunin-Maldacena solution [31] dual to the β-deformation of N = 4 SYM. All these solutions

1See [3]–[26] for a sample of recent work and [27] for a review and a more complete list of references.
2See [2] for a review on holographic RG flows and a more complete list of references.
3We will make a slight abuse of language here and use the term non-relativistic Coulomb branch flow to

describe the non-relativistic version of the Coulomb branch RG flow of the SYM.
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have at least one U(1) isometry on the compact manifold and we find their non-relativistic

versions by applying the null Melvin twist along this U(1). An important general feature

of the solutions of [31, 34, 36, 39] is the presence of NS and RR fluxes on the internal

manifold. The null Melvin twist preserves these fluxes and to the best of our knowledge

the solutions in section 4 and section 7 are the first examples of gravity backgrounds with

Schrödinger isometry which have non-trivial internal flux.

It is worth mentioning that an RG flow geometry which flows from a relativistic fixed

point to a non-relativistic Lifshitz-like fixed point has been constructed in [26]. In contrast,

the RG flow background discussed in section 3 interpolates between two vacua invariant

under the Schrödinger symmetry.

It should be noted that there is no known finite temperature version of the ten-

dimensional N = 1 and N = 2∗ PW solutions, so we refrain from addressing finite

temperature aspects of the geometries dual to the non-relativistic RG-flows.4 The finite

temperature Lunin-Maldacena solution is well known and we find its non-relativistic ver-

sion by applying the null Melvin twist. It will be interesting to analyze the thermodynamics

of this background and understand if the marginal deformation affects certain transport

coefficients in the dual field theory.

We start in section 2 with a review of the Schrödinger symmetry and its dual realization

in type IIB supergravity, we also construct the most general null Melvin twist of AdS5×S5.

We introduce the PW background in section 3 and in section 4 show that the Melvin twisted

PW background possesses the Schrödinger symmetry in the UV and the IR. Section 5

contains the non-relativistic version of the family of fixed points interpolating between the

Z2 orbifold of the PW fixed point and the KW fixed point. In section 6 we discuss the

non-relativistic version of the N = 2∗ Coulomb branch RG flow solution. We apply the

null Melvin twist to the Lunin-Maldacena background in section 7 and in section 8 we

present some comments about the field theories dual to the geometries that we construct

via the null Melvin twist. Section 9 contains some concluding remarks and open problems.

Various technical details are presented in the appendices.

2 Schrödinger symmetry

2.1 The algebra

The symmetry group of the Schrödinger equation in flat space is known as the Schrödinger

symmetry. The corresponding algebra is generated by spatial translations P i, temporal

translation H, spatial rotations M ij , Galilean boost Ki, the dilatation operator D, a

special conformal transformation C and the Galilean mass M . The explicit form of the

algebra is given by the following commutation relations (i = 1, . . . , d, where d is the number

4There was some work on the finite temperature N ∗ = 2 PW solution in [40], however the explicit ten

dimensional solution is not known.
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of spatial dimensions)

[
M ij ,Mkl

]
= i
(
δikM jl+ δjlM ik− δilM jk− δjkM il

)
, [M ij , P k] = i

(
δikP j− δjkP i

)
,

[
M ij,Kk

]
= i
(
δikKj− δjkKi

)
, [D,P i] = −iP i , [D,Ki] = iKi , [D,H] = −2iH

[
P i,Kj

]
=−iδijM , [D,C] = 2iC , [H,C] = iD . (2.1)

The last two commutation relations involving the special conformal transformation gen-

erator C can only be included when the dynamical exponent, characterizing the different

scaling of space and time, is 2. In this case, also the commutator [D,M ] = 0. Therefore

the states are simultaneous eigenstates of the dilatation and the mass operator.

The Schrödinger algebra in d-spatial dimensions can be obtained by the light cone

reduction of the relativistic conformal algebra in (d + 1)-spatial dimensions. This can

be intuitively understood by noticing that the light cone reduction of the massless Klein-

Gordon equation (which is conformal) gives the Schrödinger equation in free space, we refer

to [3, 4] for further details. Here we will be interested in the case d = 2, i.e. non-relativistic

field theories in 2 + 1 dimensions.

2.2 The dual geometry

In [3, 4], a corresponding five-dimensional gravitational background was constructed which

possesses the Schrödinger isometry group in two spatial dimensions. It was further realized

in [8–10] that it is possible to embed this geometry in ten dimensions. This can be done

by applying a solution generating technique, the null Melvin twist, to the well-known

AdS5 × S5 background (in the Poincare patch) [32, 33]. Here we will apply the most

general null Melvin twist and generalize the background found in [8–10].

We start with the planar AdS5 × S5 non-extremal black hole solution in string frame

(The radii of the AdS5 and S5 are equal to L)

ds2 = L2r2[−F (r)dt2 + dy2 + dx2
1 + dx2

2] +
L2

r2F (r)
dr2 + L2

3∑

i=1

(dµ2
i + µ2

i dϕ
2
i ) , (2.2)

F(5) = L4(r3dt ∧ dx1 ∧ dx2 ∧ dy ∧ dr + sin3 ϑ cos ϑ sin ξ cos ξdϑ ∧ dξ ∧ dϕ1 ∧ dϕ2 ∧ dϕ3) ,

(2.3)

where

µ1 = cos ϑ , µ2 = sinϑ cos ξ , µ3 = sinϑ sin ξ ,

and

F (r) = 1 − r4+
r4

.

The coordinates on S5 are chosen such that the U(1) isometries along φi are the U(1)3

Cartan subgroup of SO(6). Now we can apply the null Melvin twist to this background.

The procedure is straightforward to implement and amounts to the following operations:

first we boost in the (t, y) plane with parameter γ0, then we perform a T-duality along y,

then we shift all three Cartan angles of S5 by ϕi → ϕi + aiy, then we perform another
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T-duality along y and finally we perform an inverse boost in the (t, y) plane with parameter

−γ0 and take the limit ai → 0, γ0 → ∞ such that ai cosh γ0 = ai sinh γ0 = finite. We also

define ηi ≡ ai cosh γ0 = ai sinh γ0. Note that we are doing something a bit more general

than the transformation in [8–10] where the case a1 = a2 = a3 was considered which

corresponds to null Melvin twist along the Hopf fiber of S5. One can think of the third

step of the null Melvin twist as three simultaneous shifts in all three Cartan directions

(or a TsssT transformation for short [31, 41]). This general null Melvin twist generates a

metric of the form

ds2 = L2r2
[
−r

2F (r)q(ϑ, ξ)

K(r)
(dt + dy)2 − F (r)

K(r)
dt2 +

dy2

K(r)
+ dx2

1 + dx2
2

]
+

L2

r2F (r)
dr2

+L2
3∑

i=1

[
dµ2

i + µ2
i dϕ

2
i

]
− L2r4+
r2K(r)

(
3∑

i=1

L2ηiµ
2
i dϕi

)2

, (2.4)

as well as an NS two-form and a non-trivial dilaton given by

B(2) =
L2r2

K(r)

(
3∑

i=1

ηiµ
2
i dϕi

)
∧ (F (r)dt + dy) , Φ(r) = −1

2
logK(r) , (2.5)

where we have defined5

K(r) = 1 +
r4+
r2
q(ϑ, ξ) , and q(ϑ, ξ) = L4

3∑

i=1

η2
i µ

2
i .

The self-dual five-form flux F(5) remains unaffected. This is the most general null Melvin

twist of the non-extremal D3 brane solution of which we can now take various limits.

First let us consider the zero temperature (extremal) limit which amounts to setting

r+ = 0. The background simplifies to

ds2 = −L
2q(ϑ, ξ)

z4
du2 +

L2

z2

(
−2dudv + dx2

1 + dx2
2 + dz2

)
+ L2

3∑

i=1

(dµ2
i + µ2

i dϕ
2
i ) ,

B(2) =
L2

z2

(
3∑

i=1

ηiµ
2
i dϕi

)
∧ du , (2.6)

where we have defined new coordinates

u = t+ y , v =
1

2
(t− y) , z =

1

r
. (2.7)

The dynamical exponent of the solution, ν, parametrizes the different scaling of time and

space in the dual non-relativistic theory and is determined by the guu term in the metric,

guu ∼ z−2ν . Our solutions have ν = 2, this is expected since only non-relativistic systems

with ν = 2 admit the full Schrödinger symmetry. Indeed, following [3], one can verify

that the background above has the full Schrödinger symmetry. The generators of the

5For generic values of ηi the function K depends on ϑ and ξ, for brevity we will denote it just by K(r).

– 5 –
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Schrödinger algebra are given by the following isometries of the metric (ǫ and ǫi (i = 1, 2)

are infinitesimal parameters)

P i : xi → xi + ǫi , H : u→ u+ ǫ , M : v → v + ǫ , (2.8)

Ki : xi → xi − ǫiu , v → v − ǫixi , M12 : x1 → x1 + ǫx2 , x2 → x2 − ǫx1 ,

D : xi → (1 − ǫ)xi , z → (1 − ǫ)z , u→ (1 − ǫ)2u , v → v ,

C : xi → (1 − ǫu)xi , z → (1 − ǫu)z , u→ (1 − ǫu)u , v → v − ǫ

2
(xixi + z2) .

One can easily check that the zero temperature background above is invariant under these

infinitesimal transformations. Alternatively one can show that the five-dimensional non-

compact metric has nine Killing vectors and their Lie brackets close under the Schrödinger

algebra. It should be possible to construct generalizations of the solution (2.6) with different

dynamical exponents, ν > 2, along the lines of [15], the field theories dual to such solutions

will not be symmetric under special conformal transformations since these are present only

for ν = 2 [42].

It is interesting to consider also the case η = η1 = η2 = η3, then the extremal solution

simplifies even further to

ds2 = −L
6η2

z4
du2 +

L2

z2

(
−2dudv + dx2

1 + dx2
2 + dz2

)
(2.9)

+L2

(
dµ2 +

sin2 µ

4
(σ2

1 + σ2
2) +

sin2 µ cos2 µ

4
σ2

3 +

(
dψ +

sin2 µ

2
σ3

)2
)
,

B(2) =
L2η

z2

(
dψ +

sin2 µ

2
σ3

)
∧ du , (2.10)

where the metric on S5 has been written as a Hopf fiber6 over CP
2, σi are the left invariant

SU(2) one forms

σ1 = cosα3 dα1 + sinα1 sinα3 dα2 ,

σ2 = sinα3 dα1 − sinα1 cosα3 dα2 , (2.11)

σ3 = dα3 + cosα1 dα2 ,

and

J =
1

2
dA ≡ 1

4
d
(
sin2 µ σ3

)

is the Kähler form on CP
2. This is the type IIB background constructed in [8–10] and as we

already emphasized it is a special case of the more general null Melvin twist of AdS5 × S5

given in (2.4), (2.5).

The Galilean mass in the Schrödinger algebra, M , can be thought of as the number

density in the non-relativistic field theory and is identified with the momentum along the

compact v direction, Pv = M
Rv

, where Rv is the radius of the v circle [8–10]. The black

hole solution after the twist has entropy, temperature and a chemical potential conjugate

to Pv . In addition to that we have the three deformation parameters ηi representing the

6We refer to appendix D for the explicit coordinate change.
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freedom to choose the twist parameters for the three possible U(1) isometries which are

global symmetries in the dual field theory. The overall scale associated with these three

twist parameters is related to the chemical potential. In the case in which all three ηi

vanish we have a DLCQ of AdS5 (or AdS5-BH) corresponding to zero number density -

i.e., no particles in the non-relativistic theory [10].

An important feature of the general null Melvin twist is the appearance of the func-

tion q(ϑ, ξ) in front of du2. For generic values of ηi this function is positive definite and

thus there are no singularities or causal pathologies [43, 44]. However for special choices

of ηi, q(ϑ, ξ) may have zeroes. We have checked explicitly that the curvature of the ten

dimensional solution is finite for all values of ηi. Functions which depend on the internal

manifold do appear in the guu component of the metric in some of the solutions analyzed

in [15], however in [15] these are eigenfunctions of the Laplacian on the internal manifold

and thus necessarily change sign, which may lead to problems with stability and causality.7

The zero temperature background in equations (2.2), (2.3) before the general null

Melvin twist has 32 Killing spinors (and thus 32 supercharges) and one can show that

for generic values of ηi none of these Killing spinors is preserved by the non-relativistic

background given in equations (2.4), (2.5). However there are special values of ηi for which

some supercharges are preserved [42].

3 The Pilch-Warner flow

We start with the Pilch-Warner flow solution presented in [34, 46]. We use the metric

in [46] since it is written in a more convenient way. Note that for convenience we make a

shift of σ3 as compared to [46], namely σhere
3 → σthere

3 + dφ . This makes the coordinate φ

the U(1) R-symmetry direction and the vielbein is

eµ+1 = ΩeAdxµ , µ = 0, 1, 2, 3 ,

e5 = Ωdr ,

e6 = L
Ωρ2

X1

[(
1 − 3

2
cos2 θ

)
dφ+

1

2
cos2 θσ3

]
,

e7 = L
Ω

ρ coshχ
dθ , (3.1)

e8 = L
Ω

ρ coshχ
sin θ cos θ

[(
3

2
+

1 − ρ6

X1

(
1 − 3

2
cos2 θ

))
dφ− 1

2

(
1 − 1 − ρ6

X1
cos2 θ

)
σ3

]
,

e9 = L
ρ

2Ω
cos θ σ1 ,

e10 = L
ρ

2Ω
cos θ σ2 ,

where

X1 = cos2 θ + ρ6 sin2 θ ,

Ω =
(coshχ)1/2X

1/4
1

ρ1/2
. (3.2)

7We thank Mukund Rangamani for useful comments on this point.
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The functions ρ(r) and χ(r) are the two supergravity scalars that trigger the flow and

σi are the SU(2) left-invariant one forms explicitly written in (2.11). There is a non-zero

complex two-form potential

B =
i

2
sinhχ(e7 − ie8) ∧ (e9 − ie10) ,

where the NS and RR 2-forms are given by

B(2) = Re(B) , C(2) = Im(B) . (3.3)

The self-dual five-form flux is given by

F(5) = (1 + ⋆)dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ (wr(r, θ)dr + wθ(r, θ)dθ) , (3.4)

where

wr(r, θ) =
e4A

4L

cosh2 χ

ρ4
[(cosh(2χ) − 3) cos2 θ + ρ6(2ρ6 sinh2 χ sin2 θ + cos(2θ) − 3)] ,

wθ(r, θ) =
e4A

8ρ2
[2 cosh2 χ+ ρ6(cosh(2χ) − 3)] sin(2θ) . (3.5)

The scalar flow has two critical points:

1) AdS5 × S5, this is the UV critical point given by χ = 0, ρ = 1 and A =
r

L
≡ r

LUV
.

2) AdS5 ×XPW , this is the IR critical point (Pilch-Warner fixed point) and is given by

χ =
log(3)

2
, ρ = 21/6 and A =

25/3

3

r

L
≡ r

LIR
.

Note that as required by the holographic c-theorem [28] the radius of AdS5 decreases

along the flow
LIR

LUV
=

3

25/3
≈ 0.944941 .

The metric of this RG flow solution is SU(2) × U(1)φ × U(1)α3 invariant, however the

complex two form breaks this down to SU(2) × U(1)φ because

B ∼ (σ1 − iσ2) ∼ e−iα3 . (3.6)

Since the background along the entire flow is manifestly SU(2) × U(1)φ invariant one can

easily apply the null Melvin twist along the two U(1) isometries y ≡ x3 and φ. This is

done explicitly in appendix A.

It is worth noting that U(1)φ is not the Hopf fiber and one can show that at the UV

fixed point the particular null Melvin twist that we apply to the PW solution corresponds

to the following choice of the twist parameters

η1 = η , η2 = −η
2

= η3 . (3.7)

The full RG flow solution after the null Melvin twist is not particularly illuminating so

we present its explicit form in appendix A and we proceed with a discussion of the non-

relativistic version of the flow geometry at the fixed points.

– 8 –
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4 Fixed points and Schrödinger symmetry

The supergravity scalar flow after the twist still has two fixed points and as we show in

this section the supergravity backgrounds at these fixed points posses the full Schrödinger

symmetry.

4.1 UV fixed point

As mentioned in the previous section, at the UV fixed point we have

ρ = 1 , χ = 0 , Ω = 1 , X1 = 1 , A =
r

L
. (4.1)

The metric, after the null Melvin twist, takes the form

ds210 = −L2e4r/L

(
1 − 3

4
cos2 θ

)
[η(dt + dy)]2 − e2r/L(dt− dy)(dt + dy)

+e2r/L(dx2
1 + dx2

2) + dr2 + L2ds2UV ,

where ds2UV is the metric on the S5 and is given by

ds2UV = dθ2+
cos2 θ

4
(σ2

1+σ2
2)+

sin2 θ cos2 θ

4
(3dφ− σ3)

2+

((
1 − 3

2
cos2 θ

)
dφ+

cos2 θ

2
σ3

)2

.

(4.2)

The NS two-form is

B(2) = L2e2r/L

((
1 − 3

4
cos2 θ

)
dφ− cos2 θ

4
σ3

)
∧ [η(dt + dy)] . (4.3)

Now define new coordinates

u = (t+ y) , v =
1

2L2
(t− y) , z = e−r/L , x̂1 = L−1x1 , x̂2 = L−1x2 .

In this coordinate the metric and the B-field becomes

ds210 = L2

(
−
(

1 − 3

4
cos2 θ

)
η2

z4
du2 +

1

z2

(
−2dudv + dx̂2

1 + dx̂2
2 + dz2

))
+ L2ds2UV .

B(2) =
ηL2

z2

((
1 − 3

4
cos2 θ

)
dφ− cos2 θ

4
σ3

)
∧ du. (4.4)

The RR sector in the UV is completely invariant under the null Melvin twist.

Note the appearance of a function of θ in front of the du2 term in the metric. As

noted before, this can be traced back to the fact that we did not use the Hopf fiber of S5

for the null Melvin twist. It is obvious that the function in front of the du2 term in the

metric above is negative definite. Therefore there are no spacetime pathologies related to

causality and instability of this background [43, 44]. As expected the dynamical exponent

of this solution is 2.
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4.2 IR fixed point

Now we move to the analysis of the IR fixed point. This fixed point is given by

ρ = 21/6 , χ =
log 3

2
, Ω =

25/12

31/4
(1+sin2 θ)1/4 , X1 = 1+sin2 θ , A =

r

LIR
,

where

LIR =
3

25/3
L . (4.5)

The metric has the form

ds210 = Ω2L2
IR

[
−6

(
1 + 3 sin4 θ

1 + sin2 θ

)
η2

z4
du2 +

1

z2

(
−2dudv + dx̂2

1 + dx̂2
2 + dz2

)

−2η
cos2 θ sin θ

1 + sin2 θ
σ1
du

z2

]
+ ds2PW , (4.6)

where again we have defined new coordinates

u =
24/3

32
(t+ y) , v =

32

24/3

1

2L2
IR

(t− y) , z = e−r/LIR , x̂1 = L−1
IRx1 , x̂2 = L−1

IRx2 ,

and ds2PW is the metric on the deformed S5 at the Pilch-Warner fixed point8 and is given by

ds2PW = L2
IR

2
5
6

3
3
2

(1 + sin2 θ)
1
2

[
2dθ2 +

cos2 θ

1 + sin2 θ
(σ2

1 + σ2
2) + 8

sin2 θ cos2 θ

(1 + sin2 θ)2

(
dφ− σ3

2

)2

+
16

3

1

(1 + sin2 θ)2

((
1 − 3

2
cos2 θ

)
dφ+

cos2 θ

2
σ3

)2
]
. (4.7)

We again note that the function in front of the du2 term in the metric is negative definite,

hence the IR fixed point is also free of spacetime pathologies. The NS two-form is

B(2) = B1 +BPW ,

where B1 is the piece of the B-field generated by the null Melvin twist

B1 = ηL2
IR

2
7
3

3

(
1 + 3 sin4 θ

1 + sin2 θ
dφ− cos2 θ

1 + sin2 θ
σ3

)
∧ du

z2
, (4.8)

and BPW is the usual internal B-field of the Pilch-Warner fixed point solution [35]

BPW =
2

4
3

32
L2

IR

[
cos2 θ sin θ

1 + sin2 θ

(
dφ− 1

2
σ3

)
∧ σ1 +

cos θ

2
dθ ∧ σ2

]
. (4.9)

The five-form RR flux is modified by the null Melvin twist and takes the form

F̃(5) = F(5) + ηL2
IR

2
7
3

3
(1 + ⋆)

du

z2
∧
(

1 + 3 sin4 θ

1 + sin2 θ
dφ− cos2 θ

1 + sin2 θ
σ3

)
∧ dC(2) . (4.10)

The RR two-form C(2) remains unchanged.

8This fixed point solution was originally found (in slightly different coordinates) in [35], see also [45].
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It can be checked that background metric (4.6), the NS two-form (4.8) and the RR

five-form (4.10) at the IR fixed point are invariant under the Schrödinger symmetry (2.8).

However there is a new interesting feature. Recall that the null coordinate u is identified

with the time coordinate for the non-relativistic field theory. Therefore the off-diagonal

term in the metric between u and σ1 can be interpreted as a rotation along the compact

σ1-direction. The presence of this term can be traced back to the fact that we had non-zero

NS flux in the solution before the twist. It will be interesting to understand the meaning

of this rotation term from the point of view of the dual field theory. It will be quite

interesting to see if this Schrödinger invariant ten-dimensional solution can be reduced to

five dimensions and understood as a solution to some effective five-dimensional equations

of motion. It is not immediately clear to us that this is possible and we will think of the

whole RG flow solution and the IR fixed point as purely ten-dimensional.

The metric of the relativistic Pilch-Warner flow geometry has an U(1) isometry which

rotates σ1 in to σ2 (this is the U(1)α3), however, this is not a symmetry of the background

because of the non-zero two-form (3.6). The null Melvin twist enhances the breaking of this

U(1)α3 by generating an off-diagonal term in the metric. This enhanced symmetry breaking

is present everywhere along the flow and at the IR fixed point but vanishes in the UV.

The dynamical exponent of this solution is ν = 2, so we see that along the RG flow the

dynamical exponent is invariant. It should be possible to find similar gravity solutions with

different dynamical exponents along the lines of [15]. To do this one should make a more

general ansatz with guu ∼ z−2ν and solve the equations of motion. Due to the presence of

internal fluxes this will be a non-trivial task.

5 Family of non-relativistic fixed points

There is a one parameter family of supergravity fixed point solutions, [39], which interpolate

between the Z2 orbifold of the PW fixed point [35] and the AdS5×T (1,1) solution discussed

by Klebanov-Witten in [38] and originally found by Romans [47]. These solutions are

gravity duals to a family of N = 1 conformal quiver gauge theories which can be thought

of as IR fixed points of mass deformations of a Z2 orbifold of N = 4 SYM. An interesting

feature of the interpolating family is that the axion-dilaton vanishes at both the PW and

the KW fixed points but has a non-trivial dependence on the coordinates of the internal

manifold for all interpolating solutions. Here we will apply the null Melvin twist to the

family of solutions in [39] and generate a new family of non-relativistic fixed points invariant

under the Schrödinger symmetry. We should note that the analytic form of this family of

solutions is not known, however in [39] numerical solutions to the supersymmetry equations

were found and it was shown explicitly that they interpolate between the KW and PW

solutions. More details on the solutions of [39] are given in appendix B.9

The structure of the metric and the two-forms given in appendix B is almost identical

to the ones for the PW flow solutions from section 4. The only difference is the dα1dα2

term in the metric which was not present in the PW solution, however one can show that

9Note that we use“hats”,e.g. f̂i, b̂i, to indicate that these are different functions from the one used in

appendix A.
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this term does not modify the result of the null Melvin twist so we can easily find the

non-relativistic analog of the family of fixed points found in [39]. Since we have gravity

duals to a family of fixed points the function A(r) is simply

A(r) =
r

LIR
, (5.1)

the constant f0 defined in [39] can be written as

f0 =
25/3

3
. (5.2)

The null Melvin twist modifies the metric and the B-field and leaves the dilaton invariant

ds210 = Ω̂2L2
IR

(
−η

2f̂4Ω̂
2

L2
IR

du2

z4
+

1

z2

(
−2dudv + dx̂2

1 + dx̂2
2 + dz2

)

−2
b̂1

L2
IR cosα3

σ1
du

z2

)
+ ds2int ,

B(2) = ηΩ̂2(f̂4dφ+ f̂6σ3) ∧
du

z2
+B(2)int , (5.3)

where

ds2int = f̂8dθ
2 + f̂1 dα

2
1 + 2f̂9 dα1dα2 + f̂2 dα

2
2 + f̂3 dα

2
3

+f̂4 dφ
2 + 2f̂5 dα2dα3 + 2f̂6 dα3dφ+ 2f̂7 dα2dφ , (5.4)

and

B(2)int = b̂1 dφ ∧ dα1 + b̂2 dα3 ∧ dα1 + b̂3 dα2 ∧ dα1 + b̂4 dθ ∧ dα2

+b̂5 dθ ∧ dα1 + b̂6 dφ ∧ dα2 + b̂7 dα3 ∧ dα2 . (5.5)

Again we have performed the change of variables

u = (t+ y) , v =
1

2L2
IR

(t− y) , z = e−r/LIR , x̂1 = L−1
IRx1 , x̂2 = L−1

IRx2 .

The RR two-form is invariant under the null Melvin twist and the self-dual five-form

transforms to

F̃(5) = F(5) + η (1 + ⋆)
(
Ω̂2e2Adu ∧

(
f̂4dφ+ f̂6dα3 + f̂7dα2

))
. (5.6)

Note that the functions f̂4, f̂6, Ω̂ and
b̂1

cosα3
depend only on θ. Their analytic form is

not explicitly known for the whole family of fixed point solutions (they are known at the

KW and PW points). However one can find numerical solutions for them [39].

The construction above shows that there is a one parameters family of supergravity

solutions with Schrödinger symmetry interpolating between the non-relativistic cousins of

the KW and PW fixed point solutions. It should be noted also that the function in front of

the du2-term in the metric, denoted by (−Ω̂4f̂4), is negative definite ensuring the absence

spacetime pathologies for all backgrounds in the interpolating family.
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5.1 The non-relativistic Klebanov-Witten point

At the KW point the background simplifies significantly and we have

b̂i = ĉi = 0 , Ω̂2 = f
1/2
0 , (5.7)

one finds also that

f̂4 =
4

9
L2

IRf
1/2
0 , f̂6 = −4

9
L2

IRf
1/2
0 cos θ . (5.8)

The metric and the B-field are then

ds210 =
25/6

31/2
L2

IR

(
−η

2

z4
du2 +

1

z2

(
−2dudv + dx̂2

1 + dx̂2
2 + dz2

))
+ ds2int ,

B(2) = η
211/6

33/2
L2

IR(dφ− cos θσ3) ∧
du

z2
, (5.9)

where

ds2int =
25/6

33/2
L2

IR

[
dθ2+cos2 θσ2

1+σ2
2+

4 sin2 θ

3+cos2 θ
dφ2+

3+cos2 θ

3

(
σ3−

4 cos θ

3+cos2 θ
dφ

)2
]
.(5.10)

As expected from the general calculation about the whole family of fixed points this solution

is invariant under the Schrödinger symmetry. Note that there is no off-diagonal σ1du

term in the metric and the coefficient in front of du2 is a constant. There is a further

simplification in this solution since the internal NS and RR fluxes vanish. These features

are due to the fact that the internal manifold is T (1,1), which is a Sasaki-Einstein manifold

and the coordinate φ used for the null Melvin twist happens to be the U(1) symmetry

corresponding to the Reeb vector [8–10]. It is also possible to find the finite temperature

version of this solution by putting a Schwarzschild black hole in the AdS5. Due to the

complications arising from the presence of internal fluxes and the non-trivial dilaton the

finite temperature solutions for the rest of the family of fixed points are not known.

6 Non-relativistic Coulomb branch RG flows

It is natural to consider the null Melvin twist of RG flow solutions which do not flow to a

fixed point in the IR. One such example for which the type IIB solution is explicitly known

is the RG flow solution dual to N = 2∗ SYM found in [36]. This geometry is dual to a

particular mass deformation of N = 4 SYM and the field theory flows to the Coulomb

branch. The background has internal NS and RR fluxes and is thus different from the

non-relativistic Coulomb branch gravity solutions discussed in [15].

The background geometry, in the notation of [36], can be written as

ds2 = Ω2ds21,4+ds25 , ds25 =
a2

2

(cX1X2)
1/4

ρ3

[
dθ2

c
+
ρ6

4
cos2 θ

(
σ2

1

cX2
+
σ2

2+σ2
3

X1

)
+

sin2 θ

X2
dφ2

]
,

c = cosh 2χ , Ω2 =
(cX1X2)

1/4

ρ
, X1 = cos2 θ+ρ6 cosh 2χ sin2 θ ,

X2 = cosh 2χ cos2 θ+ρ6 sin2 θ , (6.1)
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where σi’s are defined in (2.11) and a =
√

2LUV . The metric has SU(2) × U(1)23 × U(1)φ
isometry, where U(1)23 refers to rotating σ2 to σ3. As usual the dilaton-axion field can be

written as a complex scalar field λ = C(0) + ie−Φ with

λ = i

(
1 − b

1 + b

)
, b =

(
c1/2X

1/2
1 −X

1/2
2

c1/2X
1/2
1 +X

1/2
2

)
e2iφ . (6.2)

This clearly breaks the U(1)φ and we are left with SU(2) × U(1)23 isometry.

The background also has non-zero RR and NS forms C(2),C(4) and B(2) given by

B(2) = eiφ
(a1

2
dθ ∧ σ1 +

a2

4
σ2 ∧ σ3 +

a3

2
σ1 ∧ dφ

)
,

a1 =−ia
2

2
tanh(2χ) cos θ , a2 = i

a2

2

ρ6sinh(2χ)

X1
sinθ cos2θ , a3 =

a2

2

sinh(2χ)

X2
sinθ cos2θ ,

B(2) = Re[B(2)] , C(2) = Im[B(2)] ,

C(4) = e4AX1

ρ2
dt ∧ dx1 ∧ dx2 ∧ dy . (6.3)

It is clear that the two-form potentials also break the U(1)φ-isometry.

The UV fixed point is obtained by setting χ = 0 and ρ = 1, where A(r) = r/L. To

perform the null Melvin twist we choose a U(1) subgroup of the SU(2) isometry along the

coordinate α2. The metric after the twist is given by

ds2 = −hΩ4e4A [η(dt + dy)]2 + Ω2e2A
[
−(dt+ dy)(dt − dy) + dx2

1 + dx2
2

]
+ Ω2dr2

+2Ω2e2Aη(dt + dy)Σ(1) + ds25 , (6.4)

where

h =
a2

8
(cX1X2)

1/4 ρ3 cos2 θ

[
1

cX2
sin2 α1 sin2 α3 +

1

X1

(
sin2 α1 cos2 α3 + cos2 α1

)]
,

Σ(1) =
a2

4
sinh(2χ) cos θ

[
sinα1 sinα3

(
sinφ

cosh(2χ)
dθ − cosφ sin θ cos θ

X2
dφ

)

− ρ6

2X1
sin θ cos θ sinφ (sinα1 cosα3dα3 + sinα3 cosα1dα1)

]
. (6.5)

The NS-NS two-form becomes

B̃(2) = Re
[
B(2)

]
+ Ω2e2AΓ(1) ∧ η (dt + dy) ,

Γ(1) =
a2

8
(cX1X2)

1/4 ρ3 cos2 θ

[
cosα1

X1
dα3 + sinα1 cosα3 sinα3

(
1

cX2
− 1

X1

)
dα1

]
+hdα2 .

(6.6)

And finally the RR forms are given by

λ̃ = λ ,

C̃(2) = Im
[
B(2)

]
+ C(0)Σ(1) ∧ η (dt + dy) ,

C̃(4) = C(4) − Ω2e2AC(2) ∧ Γ(1) ∧ η (dt+ dy) . (6.7)
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From the definition of h in (6.5), it is clear that h is a positive function10 except at

θ = π/2 and hence the corresponding non-relativistic background is again free off spacetime

pathologies. At θ = π/2 we have guu = 0, one can check however that the curvature is

finite at this point so nothing dramatic happens to the ten-dimensional metric.

At the UV, the twisted background takes a pleasingly simple form

ds2 = L2

(
−
(

1

4
cos2 θ

)
η2

z4
du2 +

1

z2

(
−2dudv + dx̂2

1 + dx̂2
2 + dz2

))
+ L2ds2UV ,

ds2UV = dθ2 +
1

4
cos2 θ

(
σ2

1 + σ2
2 + σ2

3

)
+ sin2 θdφ2 ,

B̃(2) =
ηL2

z2

(
1

4
cos2 θ

)
(dα2 + cosα1dα3) ∧ du ,

C̃(4) =
L2

z4
dt ∧ dx̂1 ∧ dx̂2 ∧ dy . (6.8)

This background is invariant under the Schrödinger symmetry and is a special case of the

general null Melvin twist of AdS5 × S5 discussed in section 2 with

η1 = 0 , η2 = −η3 ≡ η

2
. (6.9)

As mentioned above the guu component of the metric has a zero at θ = π/2, however the

curvature of the ten dimensional solution is regular at this point so the background does

not have physical singularities. We want to stress again that the main difference between

the Coulomb branch solutions presented in [15] and the solution constructed above is the

presence of the off-diagonal terms in the metric and the non-trivial C(2) and B(2) fluxes

along the flow. The Coulomb branch solutions of [15] are non-relativistic cousins of the RG

flows in [29], whereas what we have here is the non-relativistic version of the solution in [36].

Although the N = 2∗ RG flow does not lead to a fixed point, the parent relativistic

flow has a rich structure in the moduli space leading to the presence of the enhançon locus

discussed in [48, 49]. In the relativistic case, this is obtained by probing the background

geometry with a probe D3-brane which spreads out into the enhançon locus. Similar com-

putation is directly amenable for the Melvin twisted non-relativistic background, however

its dual field theory interpretation is unclear to us at present.

7 Non-relativistic Lunin-Maldacena solution

The last background to which we will apply the null Melvin twist is the Lunin-Maldacena

deformation of AdS5 × S5 [31]. The background is obtained from the extremal (or non-

extremal [50]) D3 brane solution by applying S-duality, a T-duality a shift and another

T-duality (TsT transformation) on two of the U(1) isometries of S5 and then one more

S-duality. The resulting solution (at zero temperature) is dual to the exactly marginal

deformation of N = 4 SYM discussed in [30]. There are three U(1) isometries on the S5

10The functions cosh(2χ) and ρ = eα(r) are always positive for real χ(r) and real α(r). The family of

different solutions for {χ(r), α(r)} represents different flows to the N = 2∗ gauge theory in the parent

relativistic version. We refer to [36] for more details.

– 15 –



J
H
E
P
0
7
(
2
0
0
9
)
0
9
8

which survive the TsT transformation so in principle we can generate a three parameter

non-relativistic background by applying the general null Melvin twist discussed in section 2.

We will however restrict to the case of null Melvin twist along the Hopf fiber direction ψ

which corresponds to the choice η1 = η2 = η3 ≡ η. The complete untwisted Lunin-

Maldacena solution at finite temperature is presented in appendix C, we refrain from

presenting the detailed steps of the null Melvin twist and give just the final solution.

We would like to point out that we consider the Lunin-Maldacena solution with complex

deformation parameter β = γ − iσ, the special case of real deformation (known also as

γ-deformation) can be obtained by setting σ = 0. In the case of real deformation one does

not have to apply the S-duality and the background is obtained by a TsT transformation of

AdS5×S5. We denote the metric and all the fields in the solution after the twist with a tilde

d̃s
2

β = H1/2L2r2
[
− η2H1/2L2r2F

1+κf ′4
(dt + dy)2 − F

1+κf ′4
dt2 +

1

1+κf ′4
dy2 + dx2

1 + dx2
2

+
dr2

Fr4
− 2η

1+κf ′4
(Fdt+dy)(b′0dµ+b′1dα1+b′2dα2+b′3dα3)

]
+

(
f ′0+

κb′20
1+κf ′4

)
dµ2

+

(
f ′1+

κb′21
1+κf ′4

)
dα2

1+

(
f ′2+

κ(b′22 − f ′27 )

1+κf ′4

)
dα2

2+

(
f ′3+

κ(b′23 − f ′26 )

1+κf ′4

)
dα2

3

+
f ′4

1+κf ′4
dψ2 +

2f ′7
1+κf ′4

dψdα2 +
2f ′6

1+κf ′4
dψdα3 + 2

(
f ′5 +

κ(b′2b
′
3 − f ′6f

′
7)

1+κf ′4

)
dα2dα3

+
2κ

1+κf ′4

[
b′0b

′
1dµdα1 + b′0b

′
2dµdα2 + b′0b

′
3dµdα3 + b′1b

′
2dα1dα2 + b′1b

′
3dα1dα3

]
. (7.1)

The B-field has two pieces - Bc which is generated by the Lunin-Maldacena transformation

and has legs only along the compact manifold [31] and Bnc which is generated by the null

Melvin twist

B̃(2) = Bc +Bnc , (7.2)

where

Bnc = −H1/2L2ηr2

1 + κf ′4
(Fdt + dy) ∧ (f ′4dψ + f ′6dα3 + f ′7dα2) ,

Bc =
b′0

1 + κf ′4
dψ ∧ dµ+

b′1
1+κf ′4

dψ ∧ dα1 +
b′2

1+κf ′4
dψ ∧ dα2 +

b′3
1+κf ′4

dψ ∧ dα3

+

(
b′4 +

κb′0f
′
6

1+κf ′4

)
dµ ∧ dα3 +

(
b′5 +

κb′1f
′
6

1+κf ′4

)
dα1 ∧ dα3

+

(
b′6 +

κ(b′2f
′
6 − b′3f

′
7)

1+κf ′4

)
dα2 ∧ dα3 +

κb′0f
′
7

1+κf ′4
dµ ∧ dα2 +

κb′1f
′
7

1+κf ′4
dα1 ∧ dα2 . (7.3)

The dilaton is

Φ̃ = Φ − 1

2
ln(1 + κf ′4) =

1

2
ln

( GH2

1 + κf ′4

)
. (7.4)
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After the null Melvin twist the RR potentials become

C̃(0) = C(0) =
Q
He−Φ , (7.5)

C̃(2) = C(2) +
Q
He−Φ ηr6L2H1/2

r4 + f ′4η
2L2H1/2r4+

(Fdt+ dy) ∧ (f ′4dχ+ f ′6dα3 + f ′7dα2) , (7.6)

C̃(4) = C(4) +C(2) ∧
ηr6L2H1/2

r4 + f ′4η
2L2H1/2r4+

(Fdt + dy) ∧ (f ′4dχ+ f ′6dα3 + f ′7dα2)

+
ηL4r4

4

[
b′0dµ+ b′1dα1 + b′2dα2 + b′3dα3 + 3σL4

(
w1dµ+

1

2
w2dα1

)

+γL4G
(

1

2
µ2

1(µ
2
2−µ2

3)dα3+

(
1

2
µ2

1µ
2
2+

1

2
µ2

1µ
2
3−µ2

2µ
2
3

)
dα2

)]
∧(dt+dy) ∧ dx1 ∧ dx2 .

(7.7)

In the above formulae we have defined

F (r) = 1 − r4+
r4
, κ(r) = H1/2L2η2 r

4
+

r2
. (7.8)

For β = 0 the background reduces to the null Melvin twist of non-extremal D3 brane

solution along the Hopf fiber found in [8, 10] and presented in section 2.

By putting r+ = 0 we get the non-relativistic zero temperature Lunin-Maldacena

solution. As advertised above, it is invariant under the Schrödinger symmetry and has

dynamical exponent ν = 2. The solution has non-zero NS and RR internal fluxes and the

characteristic rotation-like components of the metric generated by the null Melvin twist.

A further generalization of the solution presented in this section is possible. One can

take the most general Lunin-Maldacena solution with three deformation parameters [41, 51]

and apply to it the general three-parameter null Melvin twist from section 2. This will

generate a six-parameter deformation of AdS5 × S5 and the resulting background should

be invariant under the Schrödinger symmetry.

8 Comments on the dual field theory

Although we have not studied the non-relativistic theories dual to the gravity solutions

constructed above in much detail, we would like to offer some comments.

First of all let us review the large Nc gauge theories dual to the gravity solutions before

we apply the null Melvin twist. The N = 4 SYM has three adjoint chiral superfields,

denoted by ΦI , where I = 1, 2, 3. It is possible to consider a mass perturbation to the

superpotential of N = 4 SYM of the form

∆W ∼ m1Φ
2
1 +m2Φ

2
2 . (8.1)

This is a relevant operator and therefore triggers an RG flow.

The case m2 = 0 (or m1 = 0) was studied by Leigh and Strassler in [30] who showed

that after integrating the massive chiral superfield the theory flows to an IR fixed point with
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N = 1 supersymmetry and SU(2) × U(1)R global symmetry. The type IIB gravity dual of

this RG flow was constructed in [34] and we applied the null Melvin twist to it in section 4.

The more general case when both m1 and m2 are non-zero and equal to each other an

N = 2∗ supersymmetric RG flow with SU(2)R × U(1) global symmetry is triggered. The

theory flows to the Coulomb branch and does not have a fixed point in the IR [52]. The

gravity solution dual to this mass deformation was found in [36] and we discussed its null

Melvin twist in section 6.

In the most general case, one can consider turning on masses for all three chiral super-

fields. This theory has N = 1 supersymmetry and again undergoes an RG flow resulting

in a very rich structure in the IR [53]. However its exact ten-dimensional gravity dual is

not known so we cannot apply the null Melvin twist to it.11

N = 4 SYM has also a particular set of marginal deformations parametrized by a

complex parameter β and therefore known as the β-deformations [30]. In this case, the

superpotential of N = 4 SYM is modified in the following way

W ∼ Tr(Φ1[Φ2,Φ3]) → Wβ ∼ Tr(eiπβΦ1Φ2Φ3 − e−iπβΦ1Φ3Φ2) . (8.2)

The field theories described by this superpotential are conformal and have N = 1 super-

symmetry. Their gravity duals were constructed in [31] by a procedure very similar to

the null Melvin twist. One starts with AdS5 × S5 and performs an S-duality followed by

a TsT transformation on two isometry directions in the internal manifold and then one

more S-duality. This construction can be easily extended to the non-extremal D3 brane

solution [50] which corresponds to turning on temperature in the dual field theory. We

discussed the non-relativistic version of the Lunin-Maldacena solution in section 7.

Finally let us comment on the relativistic field theory dual the family of RG flows and

fixed points discussed in section 5. We begin with Z2 quiver gauge theory with an SU(N)×
SU(N) gauge group, two hypermultiplets (A1, B2) and (B1, A2) and a pair of adjoint chiral

superfields (Φ1,Φ2) [38, 54]. The theory is conformal and has N = 2 supersymmetry. It

can be deformed by the following mass term

∆W ∼ m1Φ
2
1 +m2Φ

2
2 . (8.3)

In the infrared one can integrate this mass term and find a family of N = 1 conformal fixed

points parametrized by the ratio m1/m2. Since the mi’s are in general complex numbers

this is actually a CP
1 worth of conformal IR fixed points [55]. The explicit gravity duals

of this family of fixed points are known, for m1 = m2 one gets the Pilch-Warner fixed

point [34] and for m1 = −m2 one finds the Klebanov-Witten fixed point (see figure 1). The

gravity solutions for an arbitrary value of m1/m2 interpolating between these two fixed

points were constructed in [39] (see also [56]).

By performing the null Melvin twist we introduce a particular deformation of the type

IIB background which is proportional to the real parameter η. When we put η = 0 in our

gravity solutions we recover the Discrete Light-Cone Quantization (DLCQ) of the original

solutions (without the null Melvin twist) along the compact light-like direction v ∼ (t−y).
11Linearized solutions of type IIB were found in [53].

– 18 –



J
H
E
P
0
7
(
2
0
0
9
)
0
9
8

U V

P WK W

Figure 1. The massive RG flow from a Z2 orbifold of N = 4 SYM in the UV to the KW and PW

fixed points in the IR. The horizontal (red) line represents a family of IR fixed points interpolating

between the KW and PW solutions. The solid lines indicate that the supergravity solutions are

known (at least numerically). The structure of this RG flows and the family of fixed points is the

same after the null Melvin twist, in particular there is a line of fixed point solutions with Schrödinger

symmetry.

The DLCQ amounts to requiring all fields to be invariant under translations along the

light-like direction v. The way to include the deformation introduced by the null Melvin

twist was discussed in [10, 57]. One simply has to twist the momentum generator Jv by

the momentum generator along the isometry direction used for the null Melvin twist12

J̃v = Jv − ηJφ . (8.4)

So the deformed DLCQ that we have to perform for η 6= 0 amounts to requiring all fields

to be invariant under shifts generated by J̃v. As noted in [10], J̃v is not light-like for η 6= 0,

therefore one technically has a DLCQ only from the point of view of the boundary field

theory. Although our gravity solutions look quite messy the discussion above apply to all

of them which have the Schrödinger symmetry.

The meaning of this deformed DLCQ in the dual field theory is well understood [10, 57].

One has to perform a deformed DLCQ with the twisted generator J̃v on the undeformed

theory dual to the gravity solution before the null Melvin twist, now Jφ has to be substituted

with its dual R-symmetry generator. The momenta in the v direction of all fields get shifted

by a certain amount proportional to η13

Pv =
N

Rv
+ ηQ , (8.5)

where N is an integer, Q is the R-charge of the field under the U(1) R-symmetry that we

use for the null Melvin twist and Rv is the radius of the compact v direction, v ∼ v+2πRv.

12For the general Melvin twist of section 2 we have J̃v = Jv −
P3

i=1 ηiJϕi

13For the general null Melvin twist we have to modify this to Pv =
N

Rv

+
3

X

i=1

ηiQi, where Qi are the

R-charges under U(1)φi
.
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Alternatively, one can think of the field theory dual to the gravitational solution af-

ter the null Melvin twist as a theory in which the products of fields get modified in the

following way14

Ψ1Ψ2 → Ψ1 ⋆Ψ2 = e2πiη(P 1
v Q2−P 2

v Q1)Ψ1Ψ2 , (8.6)

where P i
v is the momentum of the field Ψi along v and Qi

R is its R-charge along the U(1)

direction used for the null Melvin twist.

We can conclude that the field theory duals of the gravity solutions that we obtained

via the null Melvin twist can be obtained by applying the deformed DLCQ procedure

described above to the field theory dual to the gravity solution before the null Melvin

twist. In particular the solution discussed in section 4 is dual to the deformed DLCQ of

a mass deformation of N = 4 SYM where one gives mass to one of the chiral superfields.

We find that the gravity dual suggests, much like its parent relativistic theory, that the

non-relativistic theory flows to an IR fixed point after the massive field is integrated out,

at this fixed point the field theory has dynamical exponent ν = 2 and is invariant under

the Schrödinger symmetry. The solution in section 7 is dual to a deformed DLCQ of the

β-deformation of N = 4 SYM discussed in [30, 31], the non-relativistic field theory is again

Schrödinger invariant. The solution of section 6 is a bit more subtle since it does not

flow to an IR fixed point. One can think of it in the following way - perform a deformed

DLCQ of N = 4 SYM and then give equal masses to two of the chiral superfields. The

theory undergoes an RG flow similar to the RG flow of its parent relativistic theory, there

is no IR fixed point and the theory flows to a Coulomb branch. Finally the solutions in

section 5 should be dual to a family of non-relativistic IR fixed points with Schrödinger

symmetry, which can be obtained by a mass deformation of the deformed DLCQ of the

N = 2 quiver gauge theory obtained by a Z2 orbifold of N = 4 SYM. Note that in all cases

we considered we have at least U(1) R-symmetry and we used exactly the corresponding

isometry direction in the internal manifold for the null Melvin twist. However in all cases

the U(1) R-symmetry is a different U(1) subgroup of the SO(6) R-symmetry of N = 4

SYM which will lead to a different definition of the star product (8.6). Note also that since

we are discussing supergravity solutions, strictly speaking, they should be considered as

duals to field theories at large Nc.

Let us also comment on the meaning of the parameter η. As pointed out in refs. [8, 10],

the particle number density in the non-relativistic field theory is proportional to some power

of η/Rv . However for the extremal gravity solutions (i.e. T = 0) this parameter can be set

to unity by rescaling u → ηu, v → η−1v. Since the RG flow solutions considered here are

only known for T = 0 we can remove the dependence of the metric on η, however we chose

to keep η explicit to emphasize that it has a physical meaning and cannot be removed

at finite temperature. We found the finite temperature non-relativistic Lunin-Maldacena

solution and thus the dual field theory has two important parameters: the temperature T

and the particle number density which is related to η. It will be interesting to study the

thermodynamics of this theory and see if the marginal deformation parameter β affects

14These theories are called dipole theories and the modified product is called a star product, see [57–59]

for a more detailed discussion of this kind of field theories and their gravity duals.
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any of the interesting thermodynamical quantities. For this finite temperature solution we

can of course take the limit η → 0 , T = fixed which will lead to the trivial case of zero

particle number density in the dual field theory.

9 Conclusions

In this note we found the non-relativistic generalizations of some known gravity solutions

which are dual to RG flows and marginal deformations of N = 4 SYM. We found that when

the original type IIB background dual to the relativistic theory has an AdS5 fixed point the

non-relativistic geometry obtained after the null Melvin twist has the Schrödinger symme-

try. This is quite a generic feature and it should persist for other AdS compactifications

with internal U(1) isometries to which one can apply the null Melvin twist.

Another general feature of all backgrounds that we discussed is the existence of RR and

NS internal fluxes. In particular after the null Melvin twist the internal NS flux translates

into off-diagonal, rotation-like, terms in the metric. More generally it will be interesting

to understand if there is a consistent truncation of Schrödinger invariant ten dimensional

IIB backgrounds with internal fluxes to five dimensions and if one can realize holographic

RG flows directly in the five-dimensional gravitational theory.

It will be also quite interesting to look at the Polchinski-Strassler solution [53] and

see how much of its rich structure is present in its non-relativistic version. The exact

gravity solution dual to this theory is not known so one cannot straightforwardly apply

the null Melvin twist. There are certainly other known solutions of type IIB and eleven-

dimensional supergravity which are dual to RG flows of relativistic gauge theories [46, 60].

It will be interesting to find their non-relativistic generalizations and understand the dual

field theories. In particular the eleven-dimensional solution of [46] realizes a holographic

RG flow between AdS4 × S7 in the UV and an AdS4 compactification with fluxes in the

IR, which is the eleven-dimensional analog of the solution in [34]. It should be possible to

find the non-relativistic version of this solution which should be dual to a non-relativistic

conformal field theory in 1 + 1 dimensions.

Since one of the goals of extending gauge/gravity duality to non-relativistic field theo-

ries is to be able to gain some understanding of these theories at strong coupling and finite

temperature, it will be quite interesting to construct the finite temperature cousins of the

non-relativistic RG flows that were discussed here.15 This will be a rather non-trivial task

and maybe one has to look for approximate solutions and extract the interesting physics

from them.

The general null Melvin twist discussed in section 2 relies on the U(1) × U(1) × U(1)

subgroup of the SO(6) isometry group of S5. One can use this to generate a large class

of non-relativistic type IIB backgrounds by applying the null Melvin twist to solutions of

the form AdS5×Lp,q,r where Lp,q,r are the five-dimensional Sasaki-Einstein manifolds con-

structed in [61]. These manifolds have U(1)×U(1)×U(1) isometry and are a generalization

of the Y p,q Sasaki-Einstein manifolds found in [62]. For generic values of (η1, η2, η3) we

expect that these non-relativistic solutions will break supersymmetry completely, but there

might be special choices of (η1, η2, η3) for which some Killing spinors are preserved [42].

15See [40] for some work on the N = 2∗ PW RG flow at finite temperature.
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This note can be considered as a modest first step in constructing holographic du-

als of non-relativistic CFT’s deformed by relevant or marginal operators, however it can

be a hint for the construction of a more general ansatz for other gravity solutions dual

to non-relativistic CFT’s. These may include solutions with different amounts of super-

symmetry [42], as well as solutions with different dynamical exponents and brane wave

deformations [15]. We hope to return to some of these problems in the near future.

Acknowledgments

We would like to thank Nick Halmagyi, Mike Mulligan and Kentaroh Yoshida for useful

discussions and comments. We are grateful to Mukund Rangamani for numerous illu-

minating conversations and explanations. We would also like to thank Clifford Johnson,

Krzysztof Pilch and Nick Warner for their interest in this work, many useful discussions

and for the constant encouragement. We would especially like to thank Clifford Johnson

for valuable comments on the manuscript. This work is supported in part by the DOE

grant DE-FG03-84ER-40168. NB is supported also by a Graduate Fellowship from KITP

and in part by the National Science Foundation under Grant No. PHY05-51164.

A Null Melvin twist of the Pilch-Warner flow

Here we present in detail the null Melvin twist of the N = 1 PW RG flow solution. It is

convenient to rewrite the solution in a more compact form. The metric is (we put y ≡ x3)

ds210 = Ω2e2A(−dt2 + dy2 + dx2
1 + dx2

2) + Ω2dr2 +
L2Ω2

ρ2 cosh2 χ
dθ2 (A.1)

+f1 dα
2
1 + f2 dα

2
2 + f3 dα

2
3 + f4 dφ

2 + 2f5 dα2dα3 + 2f6 dα3dφ+ 2f7 dα2dφ .

The NS and RR two-form potentials are

B(2) = b1 dφ ∧ dα1 + b2 dα3 ∧ dα1 + b3 dα2 ∧ dα1 + b4 dθ ∧ dα2 + b5 dθ ∧ dα1

+b6 dφ ∧ dα2 + b7 dα3 ∧ dα2 . (A.2)

C(2) = c1 dφ ∧ dα1 + c2 dα3 ∧ dα1 + c3 dα2 ∧ dα1 + c4 dθ ∧ dα2 + c5 dθ ∧ dα1

+c6 dφ ∧ dα2 + +c7 dα3 ∧ dα2 . (A.3)

Where we have defined

f1 =
L2ρ2

Ω2

cos2 θ

4
,

f2 =
L2ρ2

Ω2

cos2 θ

4
sin2 α1 + L2Ω2 cos2 α1

[
ρ4

X2
1

cos4 θ

4
+

sin2 θ cos2 θ

4ρ2 cosh2 χ

(
1 − 1 − ρ6

X1
cos2 θ

)2
]
,

f3 = L2Ω2

[
ρ4

X2
1

cos4 θ

4
+

sin2 θ cos2 θ

4ρ2 cosh2 χ

(
1 − 1 − ρ6

X1
cos2 θ

)2
]
, (A.4)

f4 =
L2Ω2ρ4

X2
1

(
1 − 3

2
cos2 θ

)2

+
L2Ω2

ρ2 cosh2 χ
sin2 θ cos2 θ

(
3

2
+

1 − ρ6

X1

(
1 − 3

2
cos2 θ

))2

,
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f5 = f3 cosα1 ,

f6 =
L2Ω2ρ4

X2
1

cos2 θ

2

(
1 − 3

2
cos2 θ

)

− L2Ω2

ρ2 cosh2 χ

sin2 θ cos2 θ

2

(
1 − 1 − ρ6

X1
cos2 θ

)(
3

2
+

1 − ρ6

X1

(
sin2 θ − 1

2
cos2 θ

))
,

f7 = f6 cosα1 ,

and

b1 =
L2

4
tanhχ cos2 θ sin θ cosα3

(
3

2
+

1 − ρ6

X1

(
1 − 3

2
cos2 θ

))
,

b2 =
L2

4
tanhχ cos2 θ sin θ cosα3

(
1 − ρ6

2X1
cos2 θ − 1

2

)
, b3 = b2 cosα1 , (A.5)

b4 = −L
2

4
tanhχ cos θ cosα3 sinα1 , b5 =

L2

4
tanhχ cos θ sinα3 ,

b6 = b1 tanα3 sinα1 , b7 = b2 tanα3 sinα1 ,

and

c1 =−b6
1

sinα1
= −b1 tanα3 , c2 = −b7

1

sinα1
= −b2 tanα3 ,

c3 =−b7 cotα1 = −b3 tanα3 , c4 = −b4 tanα3 , (A.6)

c5 =−b4
1

sinα1
= b5 cotα3 , c6 = b1 sinα1 = b6 cotα3 , c7 = b2 sinα1 = b7 cotα3 .

Now we are ready to the apply the five steps of the null Melvin twist.

Step 1. Perform a boost in the (t, y) plane with a parameter γ0

t→ ct− sy , y → −st+ cy , (A.7)

where

c = cosh γ0 , s = sinh γ0 , (A.8)

note that c2 − s2 = 1. The whole background is invariant under this boost so nothing is

changed.

Step 2. Perform T-duality along y. To avoid clutter we will not show the explicit changes

in the RR-forms at each steps, but present the final result.

At this step the B-field is invariant under this T-duality, the only changes are in the

metric and the dilaton which take the form

ds210 =
1

Ω2e2A
dy2 + Ω2e2A(−dt2 + dx2

1 + dx2
2) + Ω2dr2 +

L2Ω2

ρ2 cosh2 χ
dθ2 (A.9)

+f1 dα
2
1 + f2 dα

2
2 + f3 dα

2
3 + f4 dφ

2 + 2f5 dα2dα3 + 2f6 dα3dφ+ 2f7 dα2dφ ,

Φ̃ = Φ − log(ΩeA) . (A.10)
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Step 3. Perform a shift φ → φ + ay. The dilaton is invariant under this shift, but the

metric and the B-field change to

ds210 =

(
1

Ω2e2A
+ a2f4

)
dy2 + 2af4dydφ+ 2af6dydα3 + 2af7dydα2

+Ω2e2A(−dt2 + dx2
1 + dx2

2) + Ω2dr2 +
L2Ω2

ρ2 cosh2 χ
dθ2 + f1 dα

2
1 + f2 dα

2
2

+f3 dα
2
3 + f4dφ

2 + 2f5 dα2dα3 + 2f6 dα3dφ+ 2f7 dα2dφ , (A.11)

B(2) = ab1 dy ∧ dα1 + ab6 dy ∧ dα2 + b1 dφ ∧ dα1 + b2 dα3 ∧ dα1 + b3 dα2 ∧ dα1

+b4 dθ ∧ dα2 + b5 dθ ∧ dα1 + b6 dφ ∧ dα2 + b7 dα3 ∧ dα2 . (A.12)

Step 4. Perform one more T-duality along y. All NS fields change (not all components

change though) under this transformation and the end result is

ds210 = h1dy
2 − 2ab1h1dydα1 − 2ab6h1dydα2 + Ω2e2A(−dt2 + dx2

1 + dx2
2) + Ω2dr2

+
L2Ω2

ρ2 cosh2 χ
dθ2+(f1 + a2b21h1) dα

2
1+(f2 + a2(b26 − f2

7 )h1) dα
2
2 +(f3 − a2f2

6h1) dα
2
3

+
f4

1 + a2f4Ω2e2A
dφ2 + 2a2b1b6h1dα1dα2 + 2(f5 − a2f6f7h1) dα2dα3

+
2f6

1 + a2f4Ω2e2A
dα3dφ+

2f7

1 + a2f4Ω2e2A
dα2dφ , (A.13)

B(2) = af4h1 dφ ∧ dy + af7h1 dα2 ∧ dy + af6h1 dα3 ∧ dy + (b1 − a2h1b1f4) dφ ∧ dα1

+(b2 − a2h1b1f6) dα3 ∧ dα1 + (b3 − a2h1b1f7) dα2 ∧ dα1 + b4 dθ ∧ dα2

+b5 dθ ∧ dα1 + (b6 − a2h1b6f4) dφ ∧ dα2 + (b7 − a2h1b6f6) dα3 ∧ dα2 . (A.14)

Φ̃ = Φ − log
(
1 + a2f4Ω

2e2A
)
, (A.15)

where we have defined

h1 =
Ω2e2A

1 + a2f4Ω2e2A
, (A.16)

Step 5. Perform one more boost in the (t, y) plane with a parameter −γ0

t→ ct+ sy , y → st+ cy , (A.17)

then take the following limit

a→ 0 , γ0 → ∞ , as = ac = η . (A.18)

The final form of the metric is

ds210 = −f4Ω
4e4A[η(dt + dy)]2 − Ω2e2A(dt− dy)(dt + dy) − 2b1Ω

2e2A[η(dt + dy)]dα1

−2b6Ω
2e2A[η(dt + dy)]dα2 + Ω2e2A(dx2

1 + dx2
2) + Ω2dr2 +

L2Ω2

ρ2 cosh2 χ
dθ2 + f1 dα

2
1

+f2 dα
2
2 + f3 dα

2
3 + f4 dφ

2 + 2f5 dα2dα3 + 2f6 dα3dφ+ 2f7 dα2dφ . (A.19)
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The B-field and the dilaton are

B(2) = f4Ω
2e2Adφ ∧ [η(dt + dy)] + f7Ω

2e2Adα2 ∧ [η(dt + dy)] + f6Ω
2e2Adα3 ∧ [η(dt + dy)]

+b1 dφ ∧ dα1 + b2 dα3 ∧ dα1 + b3 dα2 ∧ dα1 + b4 dθ ∧ dα2 + b5 dθ ∧ dα1

+b6 dφ ∧ dα2 + b7 dα3 ∧ dα2 ,

Φ̃ = Φ − log
(
1 + a2f4Ω

2e2A
)
→ Φ . (A.20)

Note that the metric on the compact manifold is the same after the Melvin twist. Note also

that there are off-diagonal metric coefficients guα1 and guα2 where u = (t+y). These metric

coefficients vanish at the UV fixed point because b1 ∼ b6 ∼ sinhχ and χ = 0. However at

the IR fixed point the off-diagonal metric coefficients are not vanishing.

In the RR-sector, G(3) = dC(2) remains invariant, but F(5) changes under the Melvin

twist procedure. Here we present the final form of the five-form flux

F̃(5) = (1 + ⋆)[dx0 ∧ dx1 ∧ dx2 ∧ dy ∧ (wr(r, θ)dr + wθ(r, θ)dθ)

+
(
Ω2e2A

)
du ∧ (f4dφ+ f6dα3 + f7dα2) ∧G(3)] . (A.21)

B Family of fixed points

This appendix is devoted to a short review of the solution found in [39]. The metric is

(note that the σi in [39] are the same as our σi)

ds210 = Ω̂2e2A(−dt2 + dy2 + dx2
1 + dx2

2) + Ω̂2dr2 + f̂8dθ
2 + f̂1 dα

2
1 + 2f̂9 dα1dα2

+f̂2 dα
2
2 + f̂3 dα

2
3 + f̂4 dφ

2 + 2f̂5 dα2dα3 + 2f̂6 dα3dφ+ 2f̂7 dα2dφ . (B.1)

The NS and RR two-form potentials are

B(2) = b̂1 dφ ∧ dα1 + b̂2 dα3 ∧ dα1 + b̂3 dα2 ∧ dα1 + b̂4 dθ ∧ dα2 + b̂5 dθ ∧ dα1

+b̂6 dφ ∧ dα2 + b̂7 dα3 ∧ dα2 , (B.2)

C(2) = ĉ1 dφ ∧ dα1 + ĉ2 dα3 ∧ dα1 + ĉ3 dα2 ∧ dα1 + ĉ4 dθ ∧ dα2 + ĉ5 dθ ∧ dα1

+ĉ6 dφ ∧ dα2 + +ĉ7 dα3 ∧ dα2 . (B.3)

There is also a non-trivial dilaton, Φ(θ), for the family of fixed points. It vanishes at the

PW and KW fixed points. Above we have defined

f̂1 = L2
IRΩ̂−2(A2

1 cos2 α3 +A2
2 sin2 α3) ,

f̂2 = L2
IRΩ̂−2

[
(A2

1 sin2 α3 +A2
2 cos2 α3) sin2 α1 +A2

3 cos2 α1

]
,

f̂3 = L2
IRΩ̂−2A2

3 , f̂4 = L2
IRΩ̂−2(A2

5 +A2
3B

2
1) , f̂5 = f̂3 cosα1 , (B.4)

f̂6 = L2
IRΩ̂−2A2

3B1 , f̂7 = f̂6 cosα1 ,

f̂8 = L2
IRΩ̂−2A2

4 , f̂9 = L2
IRΩ̂−2(A2

1 −A2
2) sinα3 cosα3 sinα1 , (B.5)

Ω̂2 = −3

2
A3A4A5

1

(A1A2)
′ ,
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where ′ denotes taking derivative with respect to θ and

b̂1 = −L2
IRF2 cosα3 , b̂2 = −L2

IRF1 cosα3 , b̂3 = b̂2 cosα1 , b̂4 = L2
IRF3 cosα3 sinα1 ,

b̂5 = −L2
IRF3 sinα3 , b̂6 = b̂1 tanα3 sinα1 , b̂7 = b̂2 tanα3 sinα1 . (B.6)

Also

ĉ1 =−L2
IRH2 sinα3 , ĉ2 =−L2

IRH1sinα3 , ĉ3 = ĉ2cosα1 , ĉ4 =−L2
IRH3 sinα3 sinα1 ,

ĉ5 =−L2
IRH3 cosα3 , ĉ6 =−ĉ1cotα3 sinα1 , ĉ7 = ĉ2 cotα3 sinα1 . (B.7)

The functions Ai and B1 depend only ont θ and are defined in [39]. We have introduced six

new functions of θ – Fi and Hi. They are related to the functions used in [39] as follows.

The three-from fluxes in [39] are

H(3) = dB(2) =(g1+g4)
A1A3A4

Ω̂3
σ1∧σ3∧dθ +

A1A4

Ω̂3
[(g1+g4)A3B1 − (g2+g5)A5]σ1∧dφ∧dθ

+(−ig3+ig6)
A2A3A5

Ω̂3
σ2∧σ3∧dφ , (B.8)

G(3) = dC(2) =(g4−g1)
A2A3A4

Ω̂3
σ2∧σ3∧dθ +

A2A4

Ω̂3
[(g4−g1)A3B1 − (g5−g2)A5]σ2∧dφ∧dθ

+(−ig3−ig6)
A1A3A5

Ω̂3
σ1∧σ3∧dφ . (B.9)

One can show that these fluxes come from the following potentials

B(2) = F1(θ) σ1 ∧ σ3 + F2(θ)σ1 ∧ dφ+ F3(θ)σ2 ∧ dθ , (B.10)

C(2) = H1(θ) σ2 ∧ σ3 +H2(θ)σ2 ∧ dφ+H3(θ)σ1 ∧ dθ , (B.11)

if the following identities hold (here ′ = d
dθ )

F ′
1 − F3 = (g1 + g4)

A1A3A4

Ω̂3
, F ′

2 =
A1A4

Ω̂3
[(g1 + g4)A3B1 − (g2 + g5)A5] , (B.12)

F2 = (−ig3 + ig6)
A2A3A5

Ω̂3
.

H ′
1 +H3 = (g4 − g1)

A2A3A4

Ω̂3
, H ′

2 =
A2A4

Ω̂3
[(g4 − g1)A3B1 − (g5 − g2)A5] , (B.13)

H2 = (ig3 + ig6)
A1A3A5

Ω̂3
.

There is also the usual self-dual five-form flux

F(5) = f0dt ∧ dx1 ∧ dx2 ∧ dy ∧ dr
+f0Ω̂

−10 (A1A2A3A4A5) σ1 ∧ σ2 ∧ (σ3 +B1dφ+B2dθ) ∧ dθ ∧ dφ . (B.14)
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C Lunin-Maldacena at finite temperature

Here we will review the finite temperature Lunin-Maldacena solution [31] found in [50].

The metric is

ds2β = H1/2L2

[
−r2

(
1 − r4+

r4

)
dt2 + r2(dx2

1 + dx2
2 + dy2) +

(
1 − r4+

r4

)−1
dr2

r2

]

+H1/2L2

[
3∑

i=1

(dµ2
i + Gµ2

i dϕ
2
i ) + G|β|2L4µ2

1µ
2
2µ

2
3(dϕ1 + dϕ2 + dϕ3)

2

]
. (C.1)

The NS and RR fields in the deformed solution are (we have set the dilaton in the unde-

formed AdS5 × S5 solution to zero)

B(2) = γGB2 − σA2 , e2Φ = GH2 . (C.2)

C(0) = H−1Q , C(2) = −γA2 − σGB2 . (C.3)

C(4) = A4 − γ2GB2 ∧ A2 +
1

2
γσA2 ∧ A2 , C(6) = B(2) ∧ C(4) . (C.4)

Where

β = γ − iσ , Q = L4γσ(µ2
1µ

2
2 + µ2

1µ
2
3 + µ2

2µ
2
3) , (C.5)

G =
1

1 + L4|β|2(µ2
1µ

2
2 + µ2

1µ
2
3 + µ2

2µ
2
3)
, H = 1 + L4σ2(µ2

1µ
2
2 + µ2

1µ
2
3 + µ2

2µ
2
3). (C.6)

And we have defined the forms [50]

A1 =L2(µ2
2dϕ2 − µ2

3dϕ3) , B1 =L2

[
−µ2

1dϕ1+
µ2

2µ
2
3

µ2
2+µ2

3

(dϕ2+dϕ3)

]
, (C.7)

A2 = C1∧(dϕ1+dϕ2+dϕ3) , B2 =L4
(
µ2

1µ
2
2dϕ1 ∧ dϕ2+µ2

1µ
2
3dϕ3 ∧ dϕ1+µ2

2µ
2
3dϕ2 ∧ dϕ3

)
,

(C.8)

A4 =L4 r
4

4
dt ∧ dx1 ∧ dx2 ∧ dy+C1 ∧ dϕ1 ∧ dϕ2 ∧ dϕ3 , (C.9)

where

dC1 = L4 sin3 ϑ cos ϑ sin ξ cos ξ dϑ ∧ dξ. (C.10)

To facilitate the null Melvin twist we will need the explicit form for the B-field

B(2) = γGL2
[
µ2

1µ
2
2dϕ1 ∧ dϕ2 + µ2

1µ
2
3dϕ3 ∧ dϕ1 + µ2

2µ
2
3dϕ2 ∧ dϕ3

]

−σL4(w1 dθ + w2 dξ) ∧ (dϕ1 + dϕ2 + dϕ3), (C.11)

where wi are defined as

C1 = L4(w1(ϑ, ξ) dϑ+ w2(ϑ, ξ) dξ) . (C.12)

Now make a coordinate change to the Hopf fiber coordinates

ϑ = µ , ξ =
α1

2
, ϕ1 = ψ , ϕ2 = ψ +

α3 + α2

2
, ϕ3 = ψ +

α3 − α2

2
, (C.13)
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where αi are the angles in the three SU(2) left invariant one forms (2.11). The metric

becomes

ds2β = H1/2L2

[
−r2

(
1 − r4+

r4

)
dt2 + r2(dx2

1 + dx2
2 + dy2) +

(
1 − r4+

r4

)−1
dr2

r2

]
(C.14)

+f ′0dµ
2 + f ′1dα

2
1 + f ′2dα

2
2 + f ′3dα

2
3 + f ′4dψ

2 + 2f ′5dα2dα3 + 2f ′6dψdα3 + 2f ′7dψdα2.

The B-field is

B(2) = b′0dψ ∧ dµ+ b′1dψ ∧ dα1 + b′2dψ ∧ dα2 + b′3dψ ∧ dα3

+b′4dµ ∧ dα3 + b′5dα1 ∧ dα3 + b′6dα2 ∧ dα3. (C.15)

The dilaton is

Φ =
1

2
ln(GH2) , (C.16)

where we have defined

f ′0 = L2H1/2 , f ′1 = L2H1/2 sin2 µ

4
,

f ′2 = L2H1/2G sin2 µ

4
, f ′3 = L2H1/2G

(
sin2 µ

4
+ |β|2L4µ2

1µ
2
2µ

2
3

)
,

f ′4 = L2H1/2G
(
1 + 9|β|2L4µ2

1µ
2
2µ

2
3

)
, f ′5 = L2H1/2G sin2 µ cosα1

4
,

f ′6 = L2H1/2G
(

sin2 µ

2
+ 3|β|2L4µ2

1µ
2
2µ

2
3

)
, f ′7 = L2H1/2G sin2 µ cosα1

2
, (C.17)

and

b′0 = 3σL4w1 , b′1 =
3

2
σL4w2 , b′2 = γGL4

(
1

2
µ2

1µ
2
2+

1

2
µ2

1µ
2
3 − µ2

2µ
2
3

)
, (C.18)

b′3 = γGL4 1

2
µ2

1(µ
2
2 − µ2

3) , b′4 = −σL4w1 , b′5 = −1

2
σL4w2 , b′6 = γGL4 1

2
µ2

2µ
2
3 .

D Hopf fiber of S
5

The standard metric on the unit radius S5 is

ds2S5 =
3∑

i=1

(
dµ2

i + µ2
i dϕ

2
i

)
= dϑ2 + cos2 ϑdϕ2

1 + sin2 ϑ(dξ2 + cos2 ξdϕ2
2 + sin2 ξdϕ2

3) , (D.1)

where we have defined

µ1 = cos ϑ , µ2 = sinϑ cos ξ , µ3 = sinϑ sin ξ. (D.2)

After the coordinate change (C.13) the metric on S5 is written as a Hopf fiber over CP
2

ds2S5 = ds2
CP

2 + (dψ + A)2 = dµ2 +
sin2 µ

4

(
σ2

1 + σ2
2 + cos2 µ σ2

3

)
+

(
dψ +

sin2 µ

2
σ3

)2

,

(D.3)

where σi are defined in (2.11). Note that the Kähler form on CP
2 is

J =
1

2
dA =

1

2
sinµ cosµ dµ ∧ σ3 +

1

4
σ1 ∧ σ2 , with A =

sin2 µ

2
σ3 . (D.4)
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E T-duality rules

Here we summarize the T-duality transformation rules for type II theories with non-zero

RR-flux [63, 64]. We assume that the T-duality is performed along the y-direction.

The NS fields transform under this according to

g̃yy =
1

gyy
, g̃ay =

Bay

gyy
, g̃ab = gab −

gaygyb +BayByb

gyy
,

B̃ay =
gay

gyy
, B̃ab = Bab −

gayByb +Baygyb

gyy
, (E.1)

Φ̃ = Φ − 1

2
log gyy .

The RR fields transform as

C̃(n)
µ...ναy = C(n−1)

µ...να − (n − 1)
C

(n−1)
[µ...ν|yg|α]y

gyy
,

C̃
(n)
µ...ναβ = C

(n+1)
µ...ναβy + nC

(n−1)
[µ...ναBβ]y + n(n− 1)

C
(n−1)
[µ...ν|yB|α|yg|β]y

gyy
. (E.2)

It is also useful to write down the T-duality rules for the RR-fluxes

F̃ (n)
µ1...µn−1y = F (n−1)

µ1...µn−1
+ (n− 1)(−1)n

gy[µ1
F

(n−1)
µ2...µn−1]y

gyy
,

F̃ (n)
µ1...µn

= F (n+1)
µ1...µny − n(−1)nBy[µ1

F
(n−1)
µ2...µn] − n(n− 1)

By[µ1
gµ2|y|F

(n−1)
µ3...µn]y

gyy
. (E.3)
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Symmetry, arXiv:0905.0673 [SPIRES].

[43] D. Marolf and L.A. Pando Zayas, On the singularity structure and stability of plane waves,

JHEP 01 (2003) 076 [hep-th/0210309] [SPIRES].

[44] D. Brecher, J.P. Gregory and P.M. Saffin, String theory and the classical stability of plane

waves, Phys. Rev. D 67 (2003) 045014 [hep-th/0210308] [SPIRES].
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